Canonical approach to finite density QCD simulations

Ph. de Forcrand^{1,2}
with
S. Kratochvila¹

¹ETH Zürich

²CERN

hep-lat/0602024

To be checked by lattice QCD simulations

The difficulty: "sign" problem

• γ₅-hermiticity:

$$\begin{split} \gamma_5(\emph{i}\not p+m \quad)\gamma_5 &= (-\emph{i}\not p+m \quad) = (\emph{i}\not p+m \quad)^\dagger \\ \text{BUT } \gamma_5(\emph{i}\not p+m+\mu\gamma_0)\gamma_5 &= (-\emph{i}\not p+m-\mu\gamma_0) = (\emph{i}\not p+m-\mu^*\gamma_0)^\dagger \\ \hline \det \not D(\mu) &= \det^* \not D(-\mu^*) \end{split}$$

det complex unless $\mu = 0$ (or $i\mu_l$)

- Corollary: measure \overline{w} must be complex $\langle \operatorname{Tr} \operatorname{Polyakov} \rangle = \exp(-\frac{1}{7}F_q) = \langle \operatorname{Re} \operatorname{Pol} \times \operatorname{Re}\overline{w} \operatorname{Im} \operatorname{Pol} \times \operatorname{Im}\overline{w} \rangle$ $\langle \operatorname{Tr} \operatorname{Polyakov}^* \rangle = \exp(-\frac{1}{7}F_{\overline{q}}) = \langle \operatorname{Re} \operatorname{Pol} \times \operatorname{Re}\overline{w} + \operatorname{Im} \operatorname{Pol} \times \operatorname{Im}\overline{w} \rangle$ $F_q \neq F_{\overline{q}} \Rightarrow \operatorname{Im}\overline{w} \neq 0$
- $Z(\mu) = \int \mathcal{D} U e^{-S_g} \det^{N_f} \not \!\!\!D(\mu) \rightarrow \text{no Monte Carlo}$ $Z_{MC} = \dots |\det| \text{ or } \det(\mu = 0) \text{ or } \dots$

All Monte Carlo ensembles have zero average baryon density: $\langle \mathbf{p} \rangle = 0$

The difficulty: "sign" problem

γ₅-hermiticity:

$$\begin{array}{c} \gamma_5(i\rlap/p+m)\gamma_5=(-i\rlap/p+m)=(i\rlap/p+m)^\dagger\\ \text{BUT }\gamma_5(i\rlap/p+m+\mu\gamma_0)\gamma_5=(-i\rlap/p+m-\mu\gamma_0)=(i\rlap/p+m-\mu^*\gamma_0)^\dagger\\ \hline\\ \det \not\!\!D(\mu)=\det^*\not\!\!D(-\mu^*)\\ \text{det complex unless }\mu=0 \text{ (or }i\mu_I) \end{array}$$

• Corollary: measure to must be complex

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_q) = \langle \text{Re Pol} \times \text{Re}\overline{\omega} - \text{Im Pol} \times \text{Im}\overline{\omega} \rangle$$

 $\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\bar{q}}) = \langle \text{Re Pol} \times \text{Re}\overline{\omega} + \text{Im Pol} \times \text{Im}\overline{\omega} \rangle$
 $F_q \neq F_{\bar{q}} \Rightarrow \overline{\text{Im}\overline{\omega}} \neq 0$

•
$$Z(\mu) = \int \mathcal{D} U e^{-S_g} \det^{N_f} \not \!\!\! D(\mu) \rightarrow \text{no Monte Carlo}$$

 $Z_{MC} = \dots |\det| \text{ or } \det(\mu = 0) \text{ or } \dots$

All Monte Carlo ensembles have zero average baryon density: $\langle \mathbf{p} \rangle = 0$

The difficulty: "sign" problem

γ₅-hermiticity:

$$\begin{split} \gamma_5(\emph{i}\not p+m \quad)\gamma_5 &= (-\emph{i}\not p+m \quad) = (\emph{i}\not p+m \quad)^\dagger \\ \text{BUT} \ \gamma_5(\emph{i}\not p+m+\mu\gamma_0)\gamma_5 &= (-\emph{i}\not p+m-\mu\gamma_0) = (\emph{i}\not p+m-\mu^*\gamma_0)^\dagger \\ \boxed{\det \not D(\mu) = \det^* \not D(-\mu^*)} \\ \det \text{complex unless } \mu &= 0 \text{ (or } \emph{i}\mu_l) \end{split}$$

- $\langle \text{Tr Polyakov } \rangle = \exp(-\frac{1}{\tau}F_{\mathbf{q}}) = \langle \text{Re Pol} \times \text{Re}\overline{\omega} - \text{Im Pol} \times \text{Im}\overline{\omega} \rangle$ $\langle \operatorname{Tr} \operatorname{Polyakov}^* \rangle = \exp(-\frac{1}{7}F_{\overline{o}}) = \langle \operatorname{Re} \operatorname{Pol} \times \operatorname{Re}\overline{o} + \operatorname{Im} \operatorname{Pol} \times \operatorname{Im} \overline{o} \rangle$ $F_{\alpha} \neq F_{\bar{\alpha}} \Rightarrow \text{Im} \overline{\omega} \neq 0$
- $Z(\mu) = \int \mathcal{D} U e^{-S_g} \det^{N_f} \mathcal{D}(\mu) \rightarrow \text{no Monte Carlo}$ $Z_{MC} = \dots |\det|$ or $\det(\mu = 0)$ or ...

All Monte Carlo ensembles have zero average baryon density: $\langle \rho \rangle = 0$

Two problems: sign and overlap

MC ensemble has zero average baryon density $\rho \Rightarrow$ exploit fluctuations in ρ

Each MC config has complex weight in target ensemble: sign problem.

→ noisy results

Two problems: sign and overlap

MC ensemble has zero average baryon density $\rho \Rightarrow$ exploit fluctuations in ρ

Each MC config has complex weight in target ensemble: sign problem.

→ noisy results

Larger volume.

Overlap problem becomes clear, starting with large-p tail

→ wrong results (Glasgow method)

Two problems: sign and overlap

MC ensemble has zero average baryon density $\rho \Rightarrow \text{exploit fluctuations in } \rho$

Each MC config has complex weight in target ensemble: sign problem.

→ noisy results

Larger volume.

Overlap problem becomes clear, starting with large-p tail

→ wrong results (Glasgow method)

Canonical: no large-p tail ⇒ reduced overlap pb. → more reliable Same thermodynamic limit

- Baryon number B fixed during Heavy-Ion collision
- Canonical simulations have different systematic errors

Hasenfratz & Toussaint; Alford et al.; PdF & Kratochvila; Alexandru et al.

• Phase diagram: $(T,\mu) \longrightarrow (T,\rho)$

• Fix B (small), increase V, lower $T \longrightarrow \text{nuclear interactions}$

Fix baryon number B

$$\begin{split} \to \delta(3B - \int d^3x \, \bar{\psi} \gamma_0 \psi) &= \tfrac{1}{2\pi} \int_{-\pi}^{+\pi} d\bar{\mu}_l \exp(-i\bar{\mu}_l (3B - \int d^3x \, \bar{\psi} \gamma_0 \psi)) \\ &= \tfrac{1}{2\pi} \int_{-\pi}^{+\pi} d\bar{\mu}_l \exp(-i\bar{\mu}_l (3B - T \int_0^{\frac{1}{T}} d\tau \int d^3x \, \bar{\psi} \gamma_0 \psi) \end{split}$$

$$Z_{C}(B) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\left(\frac{\mu_{I}}{T}\right) e^{-i3B\frac{\mu_{I}}{T}} Z_{GC}(\mu = i\mu_{I})$$

- μ_l -dependency is in det $M(U, i\mu_l)$ only! \rightarrow variance reduction

$$\frac{Z_C(B=rac{q}{3})}{Z_{GC}(i\mu_{I_0})} = \langle rac{1}{\det(U,i\mu_{I_0})} c_q(U) \rangle$$

Combine many ensembles with Ferrenberg-Swendsen

Fix baryon number B

$$Z_{\mathbf{C}}(B) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\left(\frac{\mu_{l}}{T}\right) e^{-i3B\frac{\mu_{l}}{T}} Z_{\mathbf{GC}}(\mu = i\mu_{l})$$

- μ_l -dependency is in det $M(U, i\mu_l)$ only! \rightarrow variance reduction

$$\frac{Z_C(B=rac{q}{3})}{Z_{GC}(i\mu_{I_0})} = \langle rac{1}{\det(U,i\mu_{I_0})} c_q(U) \rangle$$

Combine many ensembles with Ferrenberg-Swendsen

Fix baryon number B

$$Z_{\mathbf{C}}(B) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\left(\frac{\mu_{l}}{T}\right) e^{-i3B\frac{\mu_{l}}{T}} Z_{\mathbf{GC}}(\mu = i\mu_{l})$$

- μ_l -dependency is in det $M(U, i\mu_l)$ only! \rightarrow variance reduction
- Strategy: sample $Z_{GC}(i\mu_I)$ at some fixed $\mu_I = \mu_{I_0}$

$$\frac{Z_C(B=rac{q}{3})}{Z_{GC}(i\mu_{I_0})} = \langle rac{1}{\det(U,i\mu_{I_0})} c_q(U) \rangle$$

Combine many ensembles with Ferrenberg-Swendsen

Fix baryon number B

$$Z_{\mathbf{C}}(B) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\left(\frac{\mu_{l}}{T}\right) e^{-i3B\frac{\mu_{l}}{T}} Z_{\mathbf{GC}}(\mu = i\mu_{l})$$

- μ_l -dependency is in det $M(U, i\mu_l)$ only! \rightarrow variance reduction
- Strategy: sample $Z_{GC}(i\mu_I)$ at some fixed $\mu_I = \mu_{I_0}$ Fourier transform each determinant exactly \rightarrow work $\sim L_s^9 \times L_t$ $\det(U, i\mu_I) = \sum_{-3V}^{+3V} c_{\alpha}(U) \exp(iq\frac{\mu_I}{T})$ Hasenfratz & Toussaint

$$rac{Z_{C}(B=rac{q}{3})}{Z_{GC}(i\mu_{I_0})}=\langlerac{1}{\det(U,i\mu_{I_0})}oldsymbol{c_q}(U)
angle$$

Combine many ensembles with Ferrenberg-Swendsen

Fix baryon number B

- μ_l -dependency is in det $M(U, i\mu_l)$ only! \rightarrow variance reduction
- Strategy: sample $Z_{GC}(i\mu_I)$ at some fixed $\mu_I = \mu_{I_0}$ Fourier transform each determinant exactly \rightarrow work $\sim L_s^9 \times L_t$ $\det(U, i\mu_I) = \sum_{-3V}^{+3V} c_{\alpha}(U) \exp(iq\frac{\mu_I}{T})$ Hasenfratz & Toussaint

$$rac{Z_{C}(B=rac{q}{3})}{Z_{GC}(i\mu_{l_0})}=\langlerac{1}{\det(U,i\mu_{l_0})}oldsymbol{c_q}(U)
angle$$

Combine many ensembles with Ferrenberg-Swendsen

From canonical to grand canonical

Version 1: Fugacity Expansion: $\mu \rightarrow B$

$$\langle B(\mu) \rangle = rac{\sum_{B=-V}^{V} B Z_C(B) \mathrm{e}^{B \frac{3\mu}{T}}}{\sum_{B=-V}^{V} Z_C(B) \mathrm{e}^{B \frac{3\mu}{T}}}$$

$$Z_{GC}(\mu) = \int d\rho e^{-\frac{1}{2}(f(\rho) - 3\mu\rho)}$$

$$\Rightarrow \mu(\rho) = \frac{1}{3}f'(\rho) \underset{V < \infty}{\approx} \frac{V}{3}(f(\rho) - f(\rho - 1/V))$$

$$Z_C(B) = e^{-\frac{F(B)}{T}} \rightarrow \frac{\mu(B)}{T} = \frac{F(B) - F(B-1)}{3T}$$

From canonical to grand canonical

Version 1: Fugacity Expansion: $\mu \rightarrow B$

$$\langle B(\mu) \rangle = rac{\sum_{B=-V}^{V} B Z_{C}(B) \mathrm{e}^{B \frac{3\mu}{T}}}{\sum_{B=-V}^{V} Z_{C}(B) \mathrm{e}^{B \frac{3\mu}{T}}}$$

Version 2: Saddle Point Approximation: $B \to \mu$ $(\rho \equiv \frac{B}{V})$

$$\begin{split} Z_{GC}(\mu) &= \int d\rho e^{-\frac{V}{T}(f(\rho) - 3\mu\rho)} \\ \rightarrow & \mu(\rho) = \frac{1}{3}f'(\rho) \underset{V < \infty}{\approx} \frac{V}{3} \left(f(\rho) - f(\rho - 1/V) \right) \end{split}$$

$$Z_{\mathbb{C}}(B) = e^{-\frac{F(B)}{T}} \rightarrow \frac{\mu(B)}{T} = \frac{F(B) - F(B-1)}{3T}$$

From canonical to grand canonical

Version 1: Fugacity Expansion: $\mu \rightarrow B$

$$\langle B(\mu)
angle = rac{\sum_{B=-V}^{V} B Z_{C}(B) \mathrm{e}^{B rac{3\mu}{T}}}{\sum_{B=-V}^{V} Z_{C}(B) \mathrm{e}^{B rac{3\mu}{T}}}$$

Version 2: Saddle Point Approximation: $B \to \mu$ $(\rho \equiv \frac{B}{V})$

$$\begin{split} Z_{GC}(\mu) &= \int d\rho e^{-\frac{V}{T}(f(\rho) - 3\mu\rho)} \\ \rightarrow & \mu(\rho) = \frac{1}{3}f'(\rho) \underset{V < \infty}{\approx} \frac{V}{3}\left(f(\rho) - f(\rho - 1/V)\right) \end{split}$$

$$Z_{\mathbb{C}}(B) = e^{-\frac{F(B)}{T}} \rightarrow \frac{\mu(B)}{T} = \frac{F(B) - F(B-1)}{3T}$$

Setup: 6^3x4 , $a \sim 0.3$ fm, $N_f = 4$ staggered fermions, $m_\pi \sim 350$ MeV \Rightarrow 1rst-order transition expected for all μ

$$\frac{\mu(B)}{T} = \frac{F(B) - F(B-1)}{3T}$$

Flip coordinates: μ versus ρ

$$rac{
ho(\mu)}{T^3} pprox 2b_2c_2^{ extbf{SB}}\left(rac{\mu}{T}
ight) + 4b_4c_4^{ extbf{SB}}\left(rac{\mu}{T}
ight)^3 o b_2 = 0.92(1), b_4 = 2.18(1)$$

Little departure from free gas

Low density phase consistent with Hadron Resonance Gas

Ph. de Forcrand

SEWM, BNL, May 2006

Canonical LQCD

Low density phase consistent with Hadron Resonance Gas

Good accuracy up to $\frac{\mu}{\tau}$ ~ 2, 30 baryons Fluctuations in transition region physical

Maxwell Construction

Maxwell Construction

$$\frac{1}{T} \int_{\rho_1}^{\rho_2} d\rho (f'(\rho) - \mu) = 0 \rightarrow f(\rho_1) - \mu \rho_1 = f(\rho_2) - \mu \rho_2$$
ie. phase transition

Compare ρ_1 with nuclear density $0.17/fm^3$

Interface tension

Shaded area = free energy of two L^2/T interfaces $\rightarrow \sqrt{\frac{\sigma}{T}} \sim 35 - 45 \text{ MeV}$

Simulations at finite μ is the future canonical? Conclusions Simulation method Canonical vs grand canonical Results Maxw

Phase Diagram $T - \mu$: comparing apples with apples

i) reweighting becomes unreliable

Phase Diagram $T - \mu$: comparing apples with apples

ii) systematic error of analytic continuation not studied at $\frac{\mu}{\tau} > 1$

Phase Diagram $T - \mu$: comparing apples with apples

iii) $\beta_c(a\mu)$ must bend down to match expectations at $\beta=0$

Conclusions

- Lattice QCD at finite μ not for the timid
- Time has come to assess systematic errors: compare methods
- Phase boundary under control for $\mu/T \lesssim 1$: continuum, chiral extrapolations?
- Canonical formalism:
 - different systematics
 - overlap problem less severe → more reliable
 - prospect: study ab initio nuclear interactions

Conclusions

Numerical approaches

I. Reweighting in (μ, β) from $(\mu = 0, \beta_c)$ Fodor & Katz $Z(\mu,\beta) = \langle \frac{\exp(-\beta S_g) \det \textit{M}(\mu)}{\exp(-\beta_c S_g) \det \textit{M}(\mu=0)} \rangle Z_{\textit{MC}}(\mu=0,\beta_c)$

Numerical approaches

I. Reweighting in (μ, β) from $(\mu = 0, \beta_c)$ Fodor & Katz $Z(\mu, \beta) = \langle \frac{\exp(-\beta S_g) \det M(\mu)}{\exp(-\beta_c S_g) \det M(\mu=0)} \rangle Z_{MC}(\mu=0, \beta_c)$

Statistical errors under control? Overlap problem

Conclusions

Numerical approaches

I. Reweighting in (μ, β) from $(\mu = 0, \beta_c)$ Fodor & Katz $Z(\mu, \beta) = \langle \frac{\exp(-\beta S_g) \det M(\mu)}{\exp(-\beta_c S_g) \det M(\mu = 0)} \rangle Z_{MC}(\mu = 0, \beta_c)$

Statistical errors under control? Overlap problem

Numerical approaches

I. Reweighting in (μ,β) from $(\mu=0,\beta_c)$

Fodor & Katz
$$Z(\mu, \beta) = \langle \frac{\exp(-\beta S_g) \det M(\mu)}{\exp(-\beta_c S_g) \det M(\mu=0)} \rangle Z_{MC}(\mu=0, \beta_c)$$

Statistical errors under control? Overlap problem

Conclusions

Ph. de Forcrand

SEWM, BNL, May 2006

Canonical LQCD

Aside: phase diagram for imaginary μ

Symmetries:

•
$$Z(+\mu) = Z(-\mu)$$
 even
• $Z(\mu + i\frac{2\pi T}{2}k) = Z(\mu)$ periodic

Phase diagram:

$$\implies$$
 Z_3 transition at $\mu_I = \frac{\pi}{3}T$, ie. $amu_I = \frac{\pi}{3N_I}$

Ph. de Forcrand SEWM, BNL, May 2006 Canonical LQCD

Aside: phase diagram for imaginary μ

Symmetries:

$$ullet Z(+\mu) = Z(-\mu)$$
 even $ullet Z(\mu + i rac{2\pi T}{3} k) = Z(\mu)$ periodic

Phase diagram:

Aside: phase diagram for imaginary μ

Symmetries:

Phase diagram:

 \implies Z_3 transition at $\mu_I = \frac{\pi}{3}T$, ie. $amu_I = \frac{\pi}{3NL}$

Ph. de Forcrand SEWM, BNL, May 2006

II. Susceptibilities at $\mu = 0$

MILC, .., TARO, Bielefeld-Swansea II, Gavai & Gupta

A few derivatives (max. 4); convergence?

Choose m_{α} , look for non-analyticity at critical point?

III. Imaginary μ + analytic continuation

II. Susceptibilities at $\mu = 0$

MILC, .., TARO, Bielefeld-Swansea II, Gavai & Gupta

A few derivatives (max. 4); convergence?

Choose m_{α} , look for non-analyticity at critical point?

III. Imaginary μ + analytic continuation

PdF & OP, D'Elia & Lombardo, Giudice & Papa, Chen & Luo, Azcoiti et al.

Independent simulations at various $\mu = i\mu_I \neq 0$

Fit with truncated Taylor series, then change $u^2 \rightarrow -u^2$

Use for pseudo-critical line

Systematic errors?

- II. Susceptibilities at $\mu = 0$
- MILC, .., TARO, Bielefeld-Swansea II, Gavai & Gupta

A few derivatives (max. 4); convergence?

Choose m_q , look for non-analyticity at critical point?

- III. Imaginary μ + analytic continuation
- PdF & OP, D'Elia & Lombardo, Giudice & Papa, Chen & Luo, Azcoiti et al.

Independent simulations at various $\mu = i\mu_I \neq 0$

Fit with truncated Taylor series, then change $\mu^2 \rightarrow -\mu^2$

Use for pseudo-critical line

Systematic errors?

→ Yet another approach: canonical

 $\mu = 0$

 $\mu = 0$

Real world —— Heavy quarks ——

Ph. de Forcrand

SEWM, BNL, May 2006

Canonical LQCD

 $\mu \neq 0$

Ph. de Forcrand

SEWM, BNL, May 2006

Canonical LQCD

Strong coupling limit?

